Two proposals for robust PCA using semidefinite programming

نویسندگان

  • MICHAEL MCCOY
  • JOEL A. TROPP
چکیده

The performance of principal component analysis (PCA) suffers badly in the presence of outliers. This paper proposes two novel approaches for robust PCA based on semidefinite programming. The first method, maximum mean absolute deviation rounding (MDR), seeks directions of large spread in the data while damping the effect of outliers. The second method produces a low-leverage decomposition (LLD) of the data that attempts to form a low-rank model for the data by separating out corrupted observations. This paper also presents efficient computational methods for solving these SDPs. Numerical experiments confirm the value of these new techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Recurrent Neural Network Model for Solving Linear Semidefinite Programming

In this paper we solve a wide rang of Semidefinite Programming (SDP) Problem by using Recurrent Neural Networks (RNNs). SDP is an important numerical tool for analysis and synthesis in systems and control theory. First we reformulate the problem to a linear programming problem, second we reformulate it to a first order system of ordinary differential equations. Then a recurrent neural network...

متن کامل

Tractable Approximations to Robust Conic Optimization Problems

In earlier proposals, the robust counterpart of conic optimization problems exhibits a lateral increase in complexity, i.e., robust linear programming problems (LPs) become second order cone problems (SOCPs), robust SOCPs become semidefinite programming problems (SDPs), and robust SDPs become NP-hard. We propose a relaxed robust counterpart for general conic optimization problems that (a) prese...

متن کامل

Eigenvalue Maximization in Sparse PCA

We examine the problem of approximating a positive, semidefinite matrix Σ by a dyad xxT , with a penalty on the cardinality of the vector x. This problem arises in the sparse principal component analysis problem, where a decomposition of Σ involving sparse factors is sought. We express this hard, combinatorial problem as a maximum eigenvalue problem, in which we seek to maximize, over a box, th...

متن کامل

A Direct Formulation for Sparse PCA Using Semidefinite Programming

Given a covariance matrix, we consider the problem of maximizing the variance explained by a particular linear combination of the input variables while constraining the number of nonzero coefficients in this combination. This problem arises in the decomposition of a covariance matrix into sparse factors or sparse PCA, and has wide applications ranging from biology to finance. We use a modificat...

متن کامل

A path following interior-point algorithm for semidefinite optimization problem based on new kernel function

In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010